Mixtures of probabilistic principal component analyzers.
نویسندگان
چکیده
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing, and visualizing data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Therefore, previous attempts to formulate mixture models for PCA have been ad hoc to some extent. In this article, PCA is formulated within a maximum likelihood framework, based on a specific form of gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analyzers, whose parameters can be determined using an expectation-maximization algorithm. We discuss the advantages of this model in the context of clustering, density modeling, and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.
منابع مشابه
Mixtures of robust probabilistic principal component analyzers
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of r...
متن کاملnr . IAS - UVA - 02 - 01 Procrustes Analysis to Coordinate Mixtures of Probabilistic Principal Component Analyzers
Mixtures of Probabilistic Principal Component Analyzers can be used to model data that lies on or near a low dimensional manifold in a high dimensional observation space, in effect tiling the manifold with local linear (Gaussian) patches. In order to exploit the low dimensional structure of the data manifold, the patches need to be localized and oriented in a low dimensional space, so that 'loc...
متن کاملMixtures of Principal Component Analyzers
Principal component analysis (PCA) is a ubiquitous technique for data analysis but one whose effective application is restricted by its global linear character. While global nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data nonlinearity by a mixture of local PCA models. However, existing techniques are limited by the absence of a probabilistic formalism wi...
متن کاملCoordinating Principal Component Analyzers
Mixtures of Principal Component Analyzers can be used to model high dimensional data that lie on or near a low dimensional manifold. By linearly mapping the PCA subspaces to one global low dimensional space, we obtain a ‘global’ low dimensional coordinate system for the data. As shown by Roweis et al., ensuring consistent global low-dimensional coordinates for the data can be expressed as a pen...
متن کاملMixtures of Gaussian Distributions under Linear Dimensionality Reduction
High dimensional spaces pose a serious challenge to the learning process. It is a combination of limited number of samples and high dimensions that positions many problems under the “curse of dimensionality”, which restricts severely the practical application of density estimation. Many techniques have been proposed in the past to discover embedded, locally-linear manifolds of lower dimensional...
متن کاملA low-cost variational-Bayes technique for merging mixtures of probabilistic principal component analyzers
Mixtures of probabilistic principal component analyzers (MPPCA) have shown effective for modeling high-dimensional data sets living on nonlinear manifolds. Briefly stated, they conduct mixture model estimation and dimensionality reduction through a single process. This paper makes two contributions: first, we disclose a Bayesian technique for estimating such mixture models. Then, assuming sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 11 2 شماره
صفحات -
تاریخ انتشار 1999